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ABSTRACT

Ruthenium-catalyzed isoquinolone syntheses with ample scope were accomplished through carboxylate assistance in environmentally benign
water as a reaction medium. The high chemoselectivity of the ruthenium(II) carboxylate complex also set the stage for the direct use of free
hydroxamic acids for annulations of alkynes.

Oxidative transition-metal-catalyzed annulations of al-
kynes by C�H bond cleavages1 are increasingly viable
tools for atom- and step-economical syntheses of bioactive
heterocycles.2,3 These transformations usually require

stoichiometric amounts of external, mostly metallic oxi-
dants,which results in the generationof undesiredwaste.2,3

Notable recent progress was accomplished by Guimond,
Fagnou and co-workers through the use of hydroxamic
acid esters4 as valuable substrates for rhodium-catalyzed
annulations of alkynes inMeOH as the solvent.5 Thus, the
N�O bond of N-methoxybenzamides served as a handle
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for the reoxidation of rhodium(I) intermediates, thereby
preventing the use of additional external oxidants.
Water is a nonflammable, nontoxic, green solvent,6 which

has attracted considerable recent attention as a reaction
medium for sustainable C�H bond functionalizations.7

Given our interest in employing water as a user-friendly
solvent for catalyzed C�H bond transformations,8,9 we
thus became attracted by devising first metal-catalyzed
direct annulations10 of alkynes by benzamides in water,11

on which we report herein. Intriguingly, the remarkable
chemoselectivity of the optimized ruthenium(II) carboxy-
late catalyst allowed for the use of N-methoxybenzamides
aswell asmore atom-economical freehydroxymic acids for
syntheses of isoquinolones, indispensable structuralmotifs
in bioactive compounds of importance to medicinal
chemistry.12

At the outset of our studies, we probed the effect of a set
of cocatalytic additives for the envisioned coupling of
N-methoxybenzamide (1a) with alkyne 2a inwater as green
solvent (Table 1). Unfortunately, the use of KPF6 did not
provide a satisfactory rate acceleration (entries 1 and 2).
Yet, among different carboxylate additives, sterically hin-
dered KO2CMes provided optimal yields of the desired
product 3aa (entries 3�7). Furthermore, it is noteworthy
that water compared favorably with respect to representa-
tive organic solvents (entries 7�12).
With optimized reaction conditions in hand, we ex-

plored the scope of the ruthenium-catalyzed annulation
of alkynes 2 by differently substituted N-methoxybenza-
mides 1 with water as a reaction medium (Scheme 1).
Notably, the catalytic systemprovedbroadly applicable,

thus enabling the efficient conversion of both electron-rich
arenes 1b�1d as well as electron-deficient derivatives
1e�1h displaying valuable functionalities, such as nitro-
or halo-substituents.
Moreover, alkyl-substituted alkynes 2 were converted

with high catalytic efficacy as well (Scheme 2), while

unsymmetrical alkynes 2d�2f provided the desired pro-
ducts 3ad�3af with excellent regioselectivities.

Table 1. Optimization of Isoquinolone Synthesisa

entry additive solvent yield

1 � H2O 17%

2 KPF6 H2O 25%

3 KOAc H2O 11%

4 NaOAc H2O 17%

5 CsOAc H2O 46%b

6 KOPiv H2O 58%

7 KO2CMes H2O 81%

8 KO2CMes t-AmOH 19%

9 KO2CMes MeOH 65%

10 KO2CMes DMF 3%

11 KO2CMes PhMe 26%b

12 KO2CMes

(10 mol %)

H2O 76%

aReaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), [RuCl2(p-
cymene)]2 (2.5 mol %), additive (30 mol %), solvent (2.0 mL), 16 h;
isolated yields. bGC-conversion.

Scheme 1. Scope of C�H/N�O Bond Functionalization in
Water
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As to the catalyst’s working mode it is noteworthy that
well-defined ruthenium(II) carboxylate complex 413 dis-
played an efficacy comparable to the one observed when
using the in situ generated catalytic system (Scheme 3).

Intramolecular competition experiments with substrates
1iand 1jbearingheteroatom-containing substituents in the
meta-position occurred with a significantly altered site
selectivity (Scheme 4) as compared to a meta-methyl-
substituted N-methoxybenzamide (1d) (3da, Scheme 1).
This observation can be rationalized with the key cyclo-
ruthenation step depending on the kinetic C�H bond
acidity.14

Additionally, intermolecular competition experiments
indicated electron-deficient arenes to be preferentially
functionalized (Scheme5), hence renderingan electrophilic
activation manifold less likely to be operative.
Intermolecular competition experiments between differ-

ently substituted alkynes 2a and 2c revealed tolane (2a) to
be predominantly reacted (Scheme 6).

Further, annulations with differently substituted diaryl-
alkynes highlighted electron-deficient derivatives to be
converted with higher relative reaction rates.15

Experiments with isotopically labeled solvent and sub-
strate [D5]-1awere suggestive of an irreversible C�Hbond
metalation (Scheme 7), which constitutes a notable differ-
ence to rhodium-catalyzed C�H bond functionalizations
with N-methoxybenzamides.5b Moreover, the kinetic iso-
tope effect (KIE) was determined to be kH/kD ≈ 3.0,15

which can be rationalized with a working mode involving
carboxylate-assisted ruthenation as the rate-limiting step.

Scheme 2. Reaction Scope with Alkyl-Alkynes 2 in Water

Scheme 3. Well-Defined Complex 4 As Catalyst

Scheme 4. Site Selectivity with Meta-Substituted Arenes

Scheme 5. Intermolecular Competition Experiment

Scheme 6. Competition Experiment between Alkynes 2a and 2c
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Finally, we were intrigued by the possibility of directly
using significantly more atom-economical free hydroxa-
mic acids 5 for ruthenium-catalyzed annulations of alkynes
by C�H/N�O bond cleavages. Thus, we were pleased to
observe that isoquinolones 3 were efficiently accessible
from user-friendly acids 5 in water (Scheme 8), thereby
further illustrating the remarkable robustness of the in-
expensive ruthenium catalyst.
In summary, we have reported on first catalyzed annula-

tions of alkynes by benzamides through C�H bond clea-
vages with water as a green reaction medium. Thus,
carboxylate assistance set the stage for a broadly applic-
able ruthenium-catalyzed isoquinolone synthesis from

N-methoxybenzamides. Moreover, the extraordinary ro-
bustness and chemoselectivity of the ruthenium(II) car-
boxylate catalyst allowed for the direct use of free
hydroxamic acids in annulations of alkynes. Further ap-
plications of inexpensive ruthenium complexes to cata-
lyzed oxidative C�H bond functionalizations are ongoing
in our laboratories and will be reported in due course.
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Scheme 7. Studies with D2O and Labeled Substrate [D5]-1a Scheme 8. Free Hydroxamic Acids 5 as Substrates


